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Technologies are an important driver of progress in the

medical sciences. Recent advances in array-based and

sequence-based instrumentation have opened up new ways

to monitor the inner molecular world of the cells and

tissues that might be relevant to human diseases. Yet it is far

from evident how these large datasets should be analyzed

and how they can be integrated with other sources of data

in order to become informative. Conversely, the medical

community expects nothing less than a list of predictive

biomarkers reflecting the risk of disease or its progression

and an understanding of the cellular mechanisms involved

in disease. However, comparing microarray samples from

healthy and diseased individuals using a differential gene

expression protocol generates a list of thousands of genes,

and it is not clear which genes are important for what.

A key idea, originating from engineering science in general

and computer science in particular, is the notion of ‘divide

and conquer’, which refers to first breaking down a problem

into smaller sub-problems that are simple enough to allow

an analysis and then combining the solutions to the sub-

problems, which gives the solution to the original problem.

Modular analysis of genomic data implements this strategy

by dividing the original genomic data into smaller number

of modules and then conquering the reduced complexity by

using these modules for prioritization to give a shorter list

of disease-associated genes. Such genes could either be

causal drivers of disease or secondary reactions to disease

that could potentially be useful biomarkers.

Benson and colleagues, in a recent paper in BMC Systems

Biology [1], have used a modular approach to study allergic

asthma. They managed to divide the complexity and arrive

at the gene encoding the interleukin-7 receptor (IL7R) as a

putative key regulator in allergic asthma. Importantly, their

computational analysis is accompanied by experiments.

Here, I put their analysis in the context of other modular

approaches and discuss the possible use of this

methodology for finding and prioritizing useful candidates

for therapeutics.

DDiivviiddiinngg  ccoommpplleexx  bbiioollooggiiccaall  ddaattaa  iinnttoo  mmoodduulleess  ooff
ddiisseeaassee--aassssoocciiaatteedd  ggeenneess
Not surprisingly, there are several different ideas on how to

divide and conquer high-throughput functional genomics

data. I will restrict my discussion here to gene expression

data, although similar remarks could be made for sequence
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Complex diseases such as allergy change gene expression in several cell types and tissues. Benson
and colleagues have now shown, in a paper in BMC Systems Biology, that this complexity can be
studied effectively using an integrated experimental and computational modular analysis. Their
strategy revealed a core of allergy-associated genes of potential therapeutic value.
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data. Conceptually there are two distinct problems. One is:

given a module of disease-associated genes, how can we

compute and/or experimentally predict which genes are good

candidates for therapeutics? Before discussing this problem I

will first give an overview of different approaches to the other

problem: identifying a module of genes.

A module is a group of genes that are related in some way to

each other and therefore a module is effectively a measure

of similarity. Grouping genes into modules depends on an

exact mathematical definition of similarity. For example, if

similarity is defined as the distance in a network, then a

graph theoretical calculation will be used. However, if gene

functional associations are used, then gene similarity will be

measured in terms of gene ontology (GO) or correlation in

gene expression values. Therefore, different algorithms are

used for dividing the genes into modules, a fact that could

be confusing for the clinical researcher.

The need to reduce the complexity of the original high-

throughput gene expression data was realized early on in its

analysis [2]. Applying established engineering concepts,

such as principal component analysis (PCA) and singular

value decomposition (SVD), reduced the dimensionality of

the data. Instead of analyzing scattered points (the samples)

in a high-dimensional space equaling the number of genes,

the data could thereby be projected into a two- to four-

dimensional space. However, it turned out to be difficult to

make a biological interpretation of the resulting linear

combinations of large numbers of genes. This problem

forced the development of different strategies in which the

available knowledge on a limited number of genes could be

used to predict the functions of as-yet uncharacterized genes.

The use of hierarchical clustering in the classic compendium

study on yeast data by Rosetta Inpharmatics [3] grouped

genes (shown as rows) by their similarity of expression

across several experimental conditions (columns). Novel

gene function was then predicted by inspecting genes in the

same cluster as genes with known functions. Subsequent

work by Eran Segal and colleagues [4] developed more

statistically sound procedures for identifying robust modules

using a Bayesian formalism applied to microarray data

generated from cancer samples.

It became clear, however, that a similarity measure based

only on correlations was insufficient, because the clusters

(modules) or Bayesian modules did not have an internal

network structure that could be used for a more refined

analysis. As a consequence, a large number of studies

addressing this problem appeared in the literature at the

beginning of 2004. The idea was that if we could identify

the wiring within cellular networks, various different

algorithms could be applied to find ‘connected groups’ in

such networks. Such an analysis would then provide more

biological insights into the mechanisms of disease.

Now, how can such networks be found using only a small

number of experimental samples with a large number of

genes? This is an impossible problem from the point of

view of engineering system identification, because the

number of possible networks consistent with the data is

prohibitively large [5]. The key simplifying insight came

from Ideker and Lauffenburger [6] and was later developed

by Nicolas Luscombe and colleagues in a pioneering paper

[7]. Here, the edges (or connections) in the network were

simply defined by transcription factor binding experiments,

and gene expression data were used to select the subsets of

edges that were active under different conditions.

This idea of defining edges in a network using a static

scaffold has since been reused using various data types

(protein-protein interaction data, pathways from a

database, text mining and DNA variants). The network of

interest is then defined by combining the gene expression

data with the scaffold, leaving only the active edges. By

searching through such an active network using graph

algorithms it is then possible to define ‘more’ connected

parts in a well defined manner, thereby providing modules

with an intrinsic network structure.

All the above approaches basically begin with a large,

complex dataset, which is then simplified by dividing the

data into smaller modules. Interestingly, Vidal and colleagues

[8] demonstrated that this process can be reversed. They

instead began with four well characterized breast cancer

genes and, by using these ideas, constructed a module in

which the genes were ‘close’ as defined by expression and

proteomic data in several species.

FFiinnddiinngg  aann  aalllleerrggyy--aassssoocciiaatteedd  mmoodduullee
Benson and colleagues [1] have now contributed to a

disease-oriented modular analysis by combining several of

the above ideas in a novel manner, as summarized in the

flow chart in Figure 1. First, because allergic disease involves

multiple cells in different tissues and because no prior

characterization of key genes was available, they turned to

several different sets of gene expression microarray data in

order to find a reference disease-associated gene around

which they could construct a module. Using the idea that

disease-associated genes tend to interact, they could search

for other disease-associated genes that were ‘close’. For this

purpose, the authors used a graph algorithm that identified

a connected clique of 103 disease-associated genes from the

microarray data.
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The T-cell receptor signaling pathway turned out to be a

pathway shared by these 103 genes, as detected by the

Ingenuity Pathway Analysis tool, which identifies physical,

transcriptional and enzymatic interactions from the litera-

ture [1]. Experimental analysis of this pathway in patient-

derived cells revealed strong activation of the ITK gene,

which is also known to be located in the genomic suscepti-

bility region for allergy. Combining a promoter analysis of

the ITK gene with expression data revealed that the trans-

cription factor GATA3 regulated ITK.

Finally, using available databases, 47 genes were identified

as interacting with GATA3. The expression data were used to

filter out 10 inactive genes, thus leaving a final module of

37 disease-associated genes around the GATA3 transcription

factor [1]. The construction of this module was accompa-

nied by several experimental tests at various stages, provid-

ing confidence to the analysis.

CCoonnqquueerriinngg  tthhee  mmoodduulleess  --  sseelleeccttiinngg  tthheerraappeeuuttiicc
ttaarrggeettss  wwiitthhiinn  tthhee  mmoodduullee
The problem of selecting therapeutic targets within a

module has not received much attention in studies that

have used a modular approach for reducing complexity.

There are various ideas from graph theory on how to

compute mathematically defined properties, such as

clustering and connectivity in large networks, which then

could suggest which nodes are essential. However,

essentiality is not necessarily equivalent to disease

association. Experimental investigators have instead

performed target selection using the full dataset in

combination with extensive experimental testing. This is, by

most measures, an inefficient and expensive procedure.

The analysis by Benson and colleagues [1] is important

because it highlights the difficulty of selecting a disease-

associated target from a module of 37 genes despite the

elegant prior reduction of complexity. They resorted to

using a connectivity criterion, selecting the IL7R gene

because it had the largest number of connections, and they

were also able to demonstrate that perturbing the IL7R gene

affected other genes and the T-cell phenotype. There are

probably several other disease-associated genes in their

module that warrant further experimental investigation.

BBeeyyoonndd  aalllleerrggyy  --  ttrraannssllaattiioonn  ttoo  tthhee  cclliinniicc
Benson and colleagues [1] have introduced a useful procedure

for defining a module of disease-associated genes. As with

most complex diseases, the study of allergy is complicated

by the fact that the disease affects several cell types and
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FFiigguurree  11
Flowchart of the modular analysis by Benson and colleagues [1]. Integration of several public gene expression datasets revealed a group of shared
(blue) and closely connected clique (red and black) disease-associated genes. A subset of these genes were found to share the T-cell receptor
signalling pathway, an observation that was then validated by independent experimentation. To identify a transcription factor (GATA3) regulating one
of this subset, the ITK gene, a promoter analysis was performed. The final module of 37 disease-associated genes consisted of genes listed in public
databases as having relevant expression patterns and interacting with GATA3.
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tissues. The process of identifying such modules therefore

requires the kind of stringent experimental validation as was

performed by the Benson team [1]. Despite their careful

analysis, because there are other transcription factors for the

ITK gene that are active in the expression datasets there is a

significant risk that several disease-associated genes remain

that were not captured in their module.

The second step of selecting a gene for therapeutics from a

module is even more problematic because we are currently

lacking systematic tools for this selection problem. Further-

more, it is not unlikely that an efficient therapy could require

targeting of several disease-associated genes simultaneously.

However, the number of combinations of three genes that

can be chosen from a small ten-gene module, for example,

quickly exceeds what is experimentally feasible to study.

In conclusion, Benson and colleagues [1] have devised an

interesting method for finding disease-associated genes, but

it needs to be evaluated on other complex diseases. Their

study also makes clear that the problem of prioritizing

disease-associated genes within a module for therapeutic

studies in the clinic is still unsolved.
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