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Biological materials are immensely complex structures whose

chemical composition can vary both temporally and on an

extremely fine spatial scale. Biologists operate with mental

models of the abundance, distribution, movement and metab-

olism of molecular and ionic species within these complex

structures. A chemical imaging tool is now available that can

illuminate such models by visualizing and quantifying these

species with a spatial resolution of around 30 nm and the

ability to obtain chemical information from features as small

as a few nanometers. This tool is a novel mass spectrometer

that generates chemical images and derived isotope ratio

images, using ions ejected directly from the surface of a sample

by a probing ion beam focused to a spot as small as around 30

nm. In this issue of Journal of Biology, Lechene and co-workers

[1] report impressive results from such an instrument, utilized

by a collaboration of biologists and instrument experts at the

National Resource for Imaging Mass Spectrometry established

by Lechene at Harvard Medical School and Brigham and

Women’s Hospital. They call their technique multi-isotope

imaging mass spectrometry (MIMS).

The first imaging secondary-ion mass spectrometer was devel-

oped by Georges Slodzian in the late 1950s for his PhD thesis

at the University of Paris [2]. This novel instrument utilized

kiloelectron-volt ion beams (‘primary’ ions) impinging on a

sample surface to eject, or ‘sputter’, ions characteristic of the

chemical composition of the surface (‘secondary’ ions). The

secondary ions were accelerated into a mass spectrometer,

where they were identified (via their mass/charge ratio) and

quantified (via the ion intensity). By using the mass spec-

trometer itself as an ion-optical microscope (in Slodzian’s

original design), or, in later designs, by focusing the primary

ion beam to a tiny spot and rastering it over the surface as in

a scanning electron microscope, it is possible to produce

element-specific (or even molecule-specific) ion images with

exceptional sensitivity. The lateral resolution of the initial

Slodzian design was around 500-1,000 nm, comparable to

an optical microscope; the modern instrument used by

Lechene et al. (also designed by Slodzian) can achieve a reso-

lution of around 30 nm. After his graduation in 1962, Slodz-

ian was invited to Stanford University by Joshua Lederberg,

who was interested in exploring the utility of this novel tech-

nology for biological research. Lederberg was interested not

just in terrestrial applications but also was looking ahead for

analytical techniques to search for life in future missions to

Mars - this only a year after the start of the United States

lunar mission program and 14 years before the Viking mis-

sions to Mars (G. Slodzian, personal communication). It is a

tribute to the difficulty of this challenge that only now,

almost half a century later, is the full power of quantitative

biological imaging with secondary ions starting to be real-

ized, as reported here by Lechene et al. [1]. 
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Biological materials are morphologically and chemically complex. A quantitative imaging tool is
now available that can produce chemical, and even metabolic, information from morphological
features as small as a few nanometers. 
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Issues with biological samples 
Application of this powerful imaging technique to biology

initially moved quite slowly, for a number of reasons. Bio-

logical samples are inherently incompatible with the high

vacuum needed for ion microanalyzer operation, and pio-

neering early work by researchers such as Bellhorn and

Lewis  [3] and Galle [4] was subject to artifacts arising from

facile migration and loss of mobile ions such as Na+, K+ and

Ca2+ during sample fixation and dehydration; the final posi-

tions of those ions that remain in the sample often do not

correspond to their original distributions. Furthermore,

much of the information in biological samples is encoded

in molecular form, and because secondary ions are pro-

duced by bombarding the sample surface with primary ions

whose energies are orders of magnitude greater than chemi-

cal bond energies, molecules are rapidly degraded by the

bombardment, and their information lost. Even images

obtained using atomic ions are extremely difficult to quan-

tify, owing to the extreme variability of ionization probabil-

ities. Ionization probability is the fraction of ejected atoms

or molecules that become ionized in the ejection process

(there is no auxiliary means of ionization). This probability

varies exponentially with the ionization potential (for posi-

tive ions) or electron affinity (for negative ions) of the

ejected species, and also depends strongly upon the chem-

istry of the sample surface from which atoms or molecules

are sputtered (so-called ‘matrix effects’). 

Many structures of interest in biology are significantly

smaller than the resolution limit of the optical microscope,

so that sub-microscopic image resolution is desirable,

achieved in the MIMS instrument by shrinking the size of the

primary ion beam to some tens of nanometers. Of particular

importance for sub-microscopic imaging is the fact that the

imaging technique is destructive - the image is produced by

ions ejected from the sample by the energetic primary ion

impact - so that shrinking the information volume requires

maximizing the efficiency with which the sputtered ions can

be created and sampled, issues specifically addressed in the

design of the instrument reported in [1].

Information issues driving instrumental design 
An ion image is constructed of an array of pixels, each of

which contains some number of secondary ions sputtered

from a region in the sample surface defined by the primary

ion beam position and size. The information in an image is

governed by Poisson statistics: ion emission is a random

process so that a number of ions, N, arriving at the detector

has a standard deviation of ±��N. Thus, a minimum of 100

ions are required to achieve a standard deviation of ±10%

for the signal in a given pixel; to measure the ratio of two

isotope signals to an accuracy of ±1%, at least 10,000 counts

of the less abundant isotope are required. Consider a

primary ion beam 50 nm in diameter generating a single

image pixel by eroding a 10-nm deep volume containing

approximately 105 atoms. If the species of interest is, say, a

1% component of this volume, the ionization probability is

1% and the mass spectrometer transmission (the fraction of

secondary ions that reach the detector) is 10%, then on

average each pixel will contain only a single ion count (and

because such small numbers fluctuate considerably, roughly

half the pixels will contain zero counts and others will

contain two or more). Thus optimization of the ionization

probability and of the mass spectrometer transmission are

primary concerns in achieving good image resolution: it is

not sufficient simply to minimize the primary beam size. In

the MIMS instrument, both ionization probability and mass

spectrometer transmission can approach 100%.

Molecular ion imaging 
Several groups have pursued the idea of obtaining molecular

image information using sputtered molecular ions them-

selves to form images. Somewhat surprisingly, given the

energetic nature of the sputtering event, biomolecules are

occasionally sputtered as intact molecular ions, or as struc-

turally identifiable fragments. The information issues in

directly imaging with molecular ion signals are challenging.

A significant fraction (perhaps around 90%) of molecules

near the impact point of a primary ion are destroyed by the

impact; even worse, the primary ions penetrate deep below

the surface and thus also damage many of the subsurface

molecules even before they can be exposed at the surface to

be sputtered. For imaging, the surface layer of a sample rarely

contains enough molecules to form an image. Even if the

species in question constituted 100% of the surface layer,

there would be only a few thousand surface molecules in a

50-nm diameter spot; if only 10% of these survive the sput-

tering event to become intact molecular ions (because the

ionization probability may be 1% or lower) most pixels

would contain only a single count, even with 100% mass

spectrometer transmission. In most cases, then, to form a

molecular ion image it is necessary to sample molecules over

an extended depth below the surface, so that there is a need

to minimize or avoid the subsurface molecular destruction

resulting from the penetrating primary ions [5]. One

approach is to minimize primary ion penetration by using

large cluster species as the primary projectiles. Work on this

challenging problem is proceeding in the laboratories of

Gillen [6], Winograd [7] and Vickerman [8] and others.

A nice example of direct molecular ion imaging is seen in the

work of Ostrowski et al. [9]. These authors used a pulsed

200-nm diameter Ga+ ion beam coupled to a time-of-flight

(TOF) mass spectrometer to image lipid composition in the
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membranes of fusing cells of Tetrahymena. They were able to

show that phosphatidylcholine, which is postulated to resist

high-curvature structures, is indeed absent from the mem-

branes in the fusion site. This study shows the importance of

designing the experiment to mesh with the strengths and

limitations of the imaging approach. The target lipids consti-

tute a large fraction of the membrane, so that image infor-

mation in this case can be gained from just a bilayer of

material. The TOF mass spectrometer both has a high trans-

mission and collects an entire mass spectrum for each ion

pulse, so that the researchers could subsequently examine

the images and were able to select fragment ion species that

were sufficiently intense and revealed the desired characteris-

tic information. Although the ion signals were fairly low for

the images, the scientific question posed - whether phos-

phatidylcholine is present at the fusion site or not - has a

simple yes/no answer, and line scans of signal intensity

through the fusion site confirmed the statistically significant

depletion of phosphatidylcholine in the site.

Design of the MIMS instrument 
For many samples, the molecules of interest may be present

in low concentrations, or be too large to sputter efficiently

(for example, proteins and nucleic acids), and if sub-micro-

meter lateral resolution is desired, ion statistical issues pre-

clude the use of direct molecular ion imaging. Therefore,

work with the MIMS instrument at Harvard has taken a very

different approach. The target molecular species are labeled

with stable isotopes such as 13C or 15N by feeding organisms

with labeled precursors. Then isotope ratio images are

obtained that quantitatively reveal the uptake of the precursor

species and thus both localize the final molecular products

(such as nucleic acids and protein) and provide information

about metabolic uptake rates in the image features. 

To obtain isotope ratios of the desired accuracy requires

simultaneous optimization of ionization probability,

primary beam size, ion collection efficiency and mass spec-

trometer transmission. About 25 years ago, working at the

University of Paris, Slodzian began to address these instru-

mental issues to achieve the ultimate image resolution and

sensitivity in the secondary ion microanalyzer. Optimum

ionization probability is achieved at oxygenated surfaces

(for positive ions) or cesiated surfaces (for negative ions).

Operationally, the most convenient way to obtain such sur-

faces is to use oxygen or cesium primary ion beams. These

primary ions are implanted into the target and accumulate

to a steady-state concentration; for cesium impinging on

organic material, a concentration of around 10-20% is typi-

cally achieved at the surface, which is roughly optimum for

high negative ion yields. Under these conditions, species

with electron affinities greater than about 2 eV are ionized

with close to 100% efficiency [10]; these include sulfur (S),

the halogens and, importantly, cyanide (CN). 

Obtaining the smallest possible primary ion beam diameter

while simultaneously optimizing ion collection efficiency

requires careful attention to ion optics, the rules of which are

quite similar to the rules of light optics. The only way to

achieve very small focused beams of oxygen or cesium ions is

to use a final lens with an extremely short focal length. In

addition, a high collection efficiency for the sputtered ions

requires the highest possible acceleration field at the sample

surface, which also means the smallest possible spacing

between the sample, held at a high positive or negative

potential, and a ground electrode. Combining these two

requirements led Slodzian to use a single coaxial ion lens

with very short working distance to serve the dual tasks of

focusing the primary ions and efficiently collecting the sec-

ondary ions (Figure 1). The analogy is with the use of coaxial

illumination through a short focal length condenser lens in

the optical microscope. Finally, these ion-optical elements

were combined with a specially designed secondary ion mass

spectrometer that simultaneously focuses ions over a wide

range of mass/charge ratios along a focal plane. In this design,

several ion signals (up to five in the Harvard instrument) can
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Figure 1
Lens design. (a) Ion lenses are irreducibly bulky and the use of separate
lenses for primary and secondary ions forces long working distances
and low demagnification for primary ions (red) and/or low collection
efficiency for secondary ions (blue). (b) A coaxial single lens design
allows the shortest possible working distance and optimum primary ion
demagnification together with high secondary ion collection efficiency.
Secondary ions of opposite polarity to the primary ions are separated
downstream by electrostatic deflection.

(a)

(b)



be detected simultaneously and ion ratios can be measured

directly, avoiding the waste of scarce signal inherent in detect-

ing only one species at a time, and ensuring that signal varia-

tions arising from primary ion beam fluctuations or sample

changes do not affect ratio measurements. The mass spec-

trometer is designed to have high transmission (around 70-

80% of sputtered ions reach the detector) together with high

mass resolution, which allows separation of the targeted ion

signal from interfering ion species at the same nominal

mass/charge (m/z) ratio. In particular, detection of 15N as the
12C15N- species at m/z 27 requires separation from 13C14N-.

These two ions differ slightly in mass by about 1 part in 4,000

due to the different nuclear binding energies of the con-

stituent atoms, and this small difference is sufficient to allow

them to be separated in Slodzian’s mass spectrometer. 

Biological imaging 
The first biological images from the prototype of this new

device were reported by Slodzian and colleagues in 1992

[11]. The instrument was commercialized under the name

NanoSIMS by Cameca (France), the company that had pre-

viously commercialized Slodzian’s original ion micro-

analyzer design and its successors; Slodzian’s prototype

instrument became the core of the National Resource for

Imaging Mass Spectrometry at Harvard. As with the direct

molecular imaging study of Ostrowski et al. [9], the work

now emerging from the Harvard facility again shows the

importance of careful experimental design to produce

samples that are optimally matched to the capabilities of

the imaging technique. The element migration problems

that had blighted the early biomedical applications of the

ion microanalyzer are largely avoided by an approach of

imaging labeled molecules using either stable isotope or

halogen labeling. The best image resolution is obtained with

a Cs+ primary ion beam, and fortunately biological material

rich in C and N yields intense signals of CN- ions, so that 15N-

labeled nitrogen and 13C-labeled carbon (which may also be

imaged directly as 13C-) can be imaged with high efficiency

and quantified with good accuracy in the CN- signal. The

destructive effect of the primary ion impacts is here not a

problem, as with molecular imaging, but rather a vital

feature of the technique, allowing molecules to be degraded

and the C and N atoms recombined into the exceptionally

useful CN- signal. 

By feeding organisms with isotopically enriched material

and developing isotope ratio images of selected features,

Lechene et al. show that it is possible to identify sites of high

metabolic activity, such as nucleic acid synthesis or protein

turnover, and even to determine quantitatively the turnover

rate of protein or nucleic acid in specific features of an organ-

ism. Owing to the exceptional sensitivity of the instrument,

features even smaller than the primary beam size can be

detected and their size can be estimated from the secondary

ion signals. An example from [1] is an image of flagella, esti-

mated to be about 10 nm wide, of Teredinibacter turnerae, a

nitrogen-fixing bacterium found in the gill of a shipworm

(Figure 2).  On an even finer scale, images of stereocilia, the

organelle of mechanoelectrical transduction, show zones

of high 15N incorporation that may correspond to tip

links, fine filaments that are directly connected to mecha-

noelectrical transduction channels and are estimated to be

5 nm in size. There is a range of possible labels, so that

dual-labeling experiments are possible, as in the co-local-

ization of DNA and RNA synthesis in rat embryo fibro-

blasts using 15N-labeled uridine and Br-labeled

deoxyuridine. Even 14C-labeling can be used, as earlier

noted by Hindie et al. [12]: direct detection of the 14C rather

than waiting for its slow radioactive decay improves sensitiv-

ity roughly 1,000-fold and so minimizes radiation hazards

while allowing lateral resolution much better than can be

achieved with autoradiography. Isotope ratio images can

also be obtained for samples directly labeled with 13C or
15N, as in the high-resolution images of lipid domains

recently obtained by Kraft et al. [13] using a NanoSIMS

instrument at Lawrence Livermore Laboratory.  In the

remarkable work reported by Lechene and co-workers, the

performance of imaging secondary ion mass spectrometry is

pushed close to its ultimate limits, opening new vistas in

quantitative biological imaging.
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Figure 2
MIMS images of Teredinibacter turnerae, a nitrogen-fixing bacterium
inhabiting a shipworm gill. The 12C15N/12C14N image (left) allows the
uptake of 15N by these organisms to be quantified. On the right, the
image of 12C15N- ions shows that sensitivity is sufficient to image the
flagellum of this bacterium (arrowed) even though the flagellum diameter
is estimated from the ion signal to be only about 10 nm. From [1]. 
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